Robotwar

By. Alex Kallend

Robotwar is a game where rather than playing as a robot, you program a robot, and see it battle against other programmed robots. The idea is simple: You have a robot, equipped with a radar device, a means of transportation, and a gun. Your robot is put into an arena with between 1 and 4 other robots, where they all try to outlive each other.

Your robot needs a goal. Will you try to outlive the other robots by not getting hurt, or will you try to destroy them before they can destroy you? Your job is to program your robots brain.

Robotwar comes with a menu based driver. It allows you to edit, compile, debug, and schedule matches between robots.

The Editor:

The editor allows you to edit robot code.

The Compiler:

The compiler presents you with a choice of robots with code in the directory. It attempts to compile that robots code, and prints any error messages to the screen. After editing any robot, you need to compile it for the changes to take effect.

The Debugger:

The debugger probably isn’t of much interest to you yet. You can try to use it, but I’m not going to explain it here, as it’s rather complicated.

The Match Scheduler:

The match scheduler presents you with a selection screen. You can add any robot that is currently compiled to the match. When you’ve finished selecting robots, you need to choose how many matches you want to run, by using the ‘n option. Hit ‘d’ and the matches begin. When the matches are over, the robots scores are returned. Each robot is given 1 point for each other robot it outlives. For multiple scheduled matches, the total score is returned.

You can stop a match at any time by pressing ‘s’. You can terminate all remaining matches by pressing ‘t’. You can toggle the sound on and off by pressing ‘m’. Any other key will pause the game until another key is pressed.

You can also run ‘fast’ matches. These return the same results as above, however, there is no display of the match, so it takes less time to get the results.

The Arena:

The arena is where the robots battle it out. The arena screen is comprised of the arena and the display. The display shows the current damage done to each robot. It is color coded, so you can tell which robot is which in the arena. The arena has dimensions of 250x190, although, since the robots have a size of 10, and are represented by their center coordinates, the actual working dimensions of the arena are (6-244 x, 6-184 y).

The Robots:

Each robot has a representation on the screen. Each robot is a different color, so they can be distinguished from each other. Each robot looks like a little tank. The direction the robot is aiming can be determined by looking at the robot’s turret.

			 225 270 315

				 \ | /

				 \ | /

			 180 -- robot -- 0

				 / | \

				 / | \

			 135 90 45

Damaging a robot:

A robot can be damaged in one of two ways. The first, more common way of being damaged is by being shot by another robot. Whenever a robot is shot it takes damage between 3 and 14% of its total. Robots can be damaged when explosions go off near them, although it does less damage than a direct hit. Robots can also be damaged by running into things. Whenever two robots collide, they each take damage equal to the speed of the moving robot. If a robot runs into a wall, it takes a few points of damage. Collisions are often fatal when robots don’t detect damage while moving, because they will continue to try and move, even though there is an obstacle in the way.

Robot Death:

A robot dies when it has taken 100% or more damage. The dead robot is removed from the game, so as not to obstruct the remaining robots. A robot also dies if it ever runs out of code to execute. A robot who runs out of code has essentially become a sitting duck. Certain illegal instructions can cause robot termination. (Things like overflowing the robots stack, writing over the ends of arrays, etc.)

When only 2 robots are left (or if only 2 robots were chosen) a countdown begins. The countdown is in robot clock cycles, so should be machine independent. Each time a robot damages another robot, 200 more cycles are added to the countdown. This countdown is displayed at the bottom of the screen, and helps to prevent stalemates between robots.

�
How to Program a Robot

Programming a robot is meant to be both enjoyable and interesting. The language is simple enough that using it isn’t a challenge, so the challenge can be designing the algorithm that the robot uses.

Comments:

Any pound sign (#) indicates that the remainder of the line it was found on is a comment. A comment is a line used by the programmer, but ignored by the computer. It’s useful to have them so that other people looking at your code can tell what you meant to do.

Variables:

Variables are words that are used to store values as your robots program runs. They must be declared before they can be used. Variables are declared by writing the name you want to use before the brackets that indicate the beginning of your code.

Functions:

Functions are small “sub-programs” that are used by the main program to work more efficiently. Functions are declared at the beginning of the program. They are called by typing the function name, followed by parenthesis. Functions can be passed parameters when they are called. Putting a value, or expression within the functions parenthesis will pass that value to the function. Additional values can be passed by adding commas. Some functions return values that are used by the main program. They do this by using the return statement. Functions that do not explicitly return a value return an undefined value, so if you want a function to return something, you need to remember to explicitly tell it to. Each function can have its own local variables that exist only while the function is being used. There are also some predefined functions that are explained later. They behave just like functions you would write.

Blocks:

A block is a collection of statements. It follows the form:

	{

		statement ;

		statement;

		statement;

	}

A block can be empty if needed:

	{

	}

�
Statements:

There are 3 main types of statements in the robot language. Each statement must be ended with a semicolon.

IF :

An if statement is used for decision making. It follows the

form

IF (expression) THEN if-statement;

or

IF (expression) THEN if-statement ELSE if-statement;

Examples:

if (a=b) then a := a + 1;

if (a=b) then

	a :=a+1 <<---- note, no semicolon here, as not

	else b :=b+1; the end of the IF statement

		

 if (a=b) then	

	{

		a:=a+1;

		b:=b+1;

	};

if (a=b) then

	{

		a:=a+1;

		b:=b+1;

	} else <<---- No semicolon here either.

 	{

		a:=a-1;

 	};

Notice, there is always a semicolon at the end of the IF statement, but not at the end of the internal THEN statements. �

WHILE

While statements are used for looping. A while statement follows the

form

WHILE (expression) DO while-statement;

A while-statement is the same as an if-statement, it can either become a single statement, or a block of statements.

Examples:

while (a<b) do

a:=a+1;

while (a<b) do

	{

		a:=a+1;

		b:=b-1;

	};

In order to program a counter, you can use a while loop, and a variable. For example, to count from 1 to 20, the following code will work.

i:= 1;

while (i<=20) do

	{

do stuff;

i:=i+1;

	};

�
Expressions

An expression is a combination of one or more numbers and variables combined with mathematical symbols. Robots supports most standard math. Like with math, parenthesis mean “do this first”, and other operations take place in the order that they would in mathematics. The table below shows the order in which operations occur, from the most important, to least important.

High Precedence

			() (parenthesis)

			^ (factor)

			*, /, % (multiplication, integer division, modulus)

			+,- (addition, subtraction)

			=,<=,<, <>,>,>= (relationships)

			not (!) (negation)

			and (&) (conjunction)

			or (|) (disjunction)

Low Precedence

so, a + b * c ^ d = f or g evaluates as (((a+(b*(c^d))) = f) or g)

In addition, assignment is considered an expression. An assignment must have a variable on the left hand side of the assignment operator (:=) and an expression on the right hand side. Assignments always resolve last in any statement.

�
Predefined Functions:

Robots use many predefined functions, to control what their actions. A list of the currently available predefined functions is presented here.

	Fire(angle) 	: fires the robot’s weapon at the selected angle.

	DistFire(angle,d)	:fires a shot with a distance variable fuse. It takes slightly longer to reload after 				firing fused shots. A shot with a distance fuse will explode at a distance d from 				the robot, as long as it doesn’t hit anything en-route to that location.

	Radar(angle) 	: sends a radar pulse out at the given angle. Returns a 0 if nothing found, or the 				distance to the robot detected, if one is found. Using the radar causes a slight 				delay in the robot’s instruction processing.

	Random(max) 	: returns a random number from 0 to (max -1)

	Locx()		: returns the robot’s current X location

	Locy()		: returns the robot’s current Y location

	Damage() 	: returns the robot’s damage status (a number from 1 to 100 if the robot is still 				functioning.)

	Goto(x,y) 	: starts the robot moving to the specified location. The robot stops when it gets 				to the specified coordinates.

	There() 	: returns true if the robot has reached it’s most recent destination, (set with goto)

			or false if the robot is still moving.

	Hit() 	: returns whether or not the robot has been damaged since the last time this 				function 	was called.

			A 0 means that the robot was not damaged. Any positive value means that the 				robot was damaged. A “5” means that the robot was hit by gunfire, while values 				between 1 and 4 indicate collisions. The side from which the collision took place 				is indicated by the value, as shown on the diagram below.

				1

			 4 2

				3

	GetAngle(x,y) 	: returns the angle along which the point x,y can be found using the robot’s 				current x and y location as a center.

	GetX(angle, d) 	: returns the x offset for a point at distance d from the robot, at the angle 				specified

	GetY(angle, d) 	: returns the y offset for a point at distance d from the robot, at the angle 				specified

	GetNumRobots() : returns the number of robots currently left in the game including this robot.

	Left() 	: returns the x coordinate of the left wall of the arena

	Right() 	: returns the x coordinates of the right wall

	Top() 	: returns the y coordinate of the top of the arena

	Bottom() 	: returns the y coordinate of the bottom of the arena

	Repair() 	: This initiates the robots self repair facilities.

�

Putting it together:

Here is a sample robot. Comments on the right of the code should help to explain what it does.

	aim; 			# global variable

function gettarget(inc) 			# one parameter, inc

{

while (radar(aim:=aim+inc) = 0) 			# looks for another robot

do if (aim > 360) then aim := aim - 360;

return aim; 				# returns when robot found

}

function move() 			# no parameters

	x; y; 			# variables

{

x:=random(230)+10; 			# assignments

y:=random(170)+10;

goto(x,y); 				# predefined function call

}

							# main function

begin

d; 				# local variable

{

	aim := 0; 			# initialize aim

	aim := gettarget(7); 			# call function

	while (getnumrobots() > 1) do 	# infinite loop for robot body

	{

		while(radar(aim)) do 			# use radar

		{

			d := damage(); 		# save damage

			fire(aim); 		# fire gun

			if (d <> damage()) then 		# if d is not what damage returns, I’ve

				move(); 		# been hit so move.

		};

		aim:= gettarget(7); 		# get a new target

	};

}

end

